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Capillary condensation between disks in two dimensions

Tamir Gil and John H. Ipsen
Department of Chemistry, The Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 26 January 1996; revised manuscript received 27 August 1996!

Capillary condensation between two two-dimensional wetted circular substrates~disks! is studied by an
effective free energy description of the wetting interface. The interfacial free-energy potential is developed on
the basis of the theory for the wetting of a single disk, where interfacial capillary fluctuations play a dominant
role. A simple approximative analytical expression of the interfacial free energy is developed and is validated
numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed
phase, its stability, and asymptotic behaviors. The theory can be applied to the description of flocculations in
two-dimensional systems of colloids.@S1063-651X~97!05802-9#

PACS number~s!: 68.45.Gd, 87.22.Bt, 64.70.Fx
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I. INTRODUCTION

The close relationship between wettability of surfac
nucleation, and condensation phenomena is of great im
tance in many natural and technological processes. The
mation of a liquid phase from a gaseous phase between
surfaces, so-calledcapillary condensation, provides a classi-
cal example. Recently, it has been pointed out on the bas
experimental observations that wetting of the surfaces i
colloidal suspension may be the cause of flocculation du
capillary condensation@1#. In this work we investigate the
conditions for this effect in a two-dimensional system.

Capillary condensation in spherical geometry has b
considered theoretically by use of mean-field theory of
effective interfacedescription of the configuration of the we
ting film around spheres@2# and around lines and lattices o
cylinders@3#. In the present paper we extend this work to t
two-dimensional analogous system of two disks and conc
trate on some additional aspects, e.g., the wetting-indu
aggregation of the disks. Further, our study is motivated
the rich properties of biological membranes. Biomembra
are quasi-two-dimensional systems that display in-pl
phase transitions and phase separations under natural c
tions @4#. Therefore, wetting effects may appear in the pr
ence of large inclusions, such as large integral proteins~or
rather complexes of them!. The biophysical significance o
our results will be discussed elsewhere@5#.

There is a crucial difference between wetting phenom
in two and three spatial dimensions that is due to the ren
malizing effect of the capillary-wave fluctuations of the i
terface between the wetting phase and the thermodyn
cally stable phase in the background. Becausethree is the
marginal dimension for this renormalizing effect@6#, the
relative importance of these fluctuations for the thermo
namics of wetting phenomena in three dimensions is
pected to be small compared with the direct forces involv
e.g., van der Waals forces. In two dimensions though~one-
dimensional interface!, the capillary-wave fluctuations play
dominant role giving rise to an effective long-range repuls
force between the substrate and the fluid-fluid interface
exclude the possibility of prewetting transitions@6,7#. As a
result, once direct substrate-interface interactions are
strong enough~above the wetting temperature! to hold the
551063-651X/97/55~2!/1713~9!/$10.00
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interface close enough to the surface of the substrate,
mean thickness of the wetting film is determined by the b
ance between adisjoining pressure, induced by the capillary
fluctuations and tending to enlarge the mean thickness,
external pressures that tend to diminish it, e.g., hydrost
pressure or gravity. Such a phenomenological picture w
recently shown to apply to the wetting of a large circu
substrate~disk! if a Laplace pressure is added to the press
balance in the wetting film@8#. The mean thickness of th
wetting film then grows liker 0

1/3, for r 0→`, wherer 0 is the
radius of the substrate@8# ~see Sec. II!. Hence a macroscopic
wetting film of thickness much larger than the molecu
distances emerges at large values ofr 0, validating the use of
interface models in which the density profile of the flui
fluid interface is replaced by a sharp kink to which a loc
interfacial stiffness is attached@6#. In this paper we expand
the effective interface potential of the single disk to the ca
of two disks by adding afluctuation-inducedpotential~Sec.
II ! to the interface potential of Ref.@2# ~Sec. IV!. In this way
we include the dominating effect of the long-waveleng
fluctuations though remaining in the simple mean-fie
framework of Ref.@2#.

Under the conditions that trigger wetting of a single dis
bringing two disks close to each other, gives rise to t
expected topologies of the fluid-fluid interface line betwe
the wetting phase and the thermodynamically stable phas
the background: one of twoseparateloops, closing around
each one of the disks individually@Fig. 1 ~sep!#, and one of
a single loop wrapping the two disks@Fig. 1 ~bri!#. The latter
is due tocapillary condensationbetween the two disks. A
transition between theseparatedandbridgedconfigurations
can be induced either by tuning the distance between
disks or by changing the thermodynamic conditions for
system, e.g., the chemical potential difference between
wetting phase and the background phase. This transition
be characterized, for example, by the discontinuous jump
the coverageof the wetting phase or in theaggregation
force, both jumps occurring as capillary condensation tak
place. The aggregation force is caused by the tendency o
condensed system to reduce the length of the interface
the coverage of the thermodynamically unstable wett
phase by reducing the distance between the disks and
course vanishing when the disks separate. In Sec. V,
1713 © 1997 The American Physical Society
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1714 55TAMIR GIL AND JOHN H. IPSEN
discuss those features and illustrate them graphically in
dition to calculating the relations among the thermodynam
parameters at the points where the capillary condensa
occurs.

Even though the problem of capillary condensation
tween two disks is very much simplified by the use of
effective interfacial potential, the equilibrium form of th
potential, which we write in Sec. IV, can only be obtain
numerically. However, an analytical approximation of th
potential can be reached by splitting the system into t
systems that effect each other only through the bound
conditions: one system describing the fluid-fluid interface
from the substrate, in the region between the two disks,
the other system describing the fluid-fluid interface in t
regions where it wraps the rest of the disks. In Sec. III,
effect of capillary-wave fluctuations and the boundary co
ditions on the analytical approximation are discussed
asymptotic properties are derived. In Sec. V we compare
effective interfacial potential of Sec. IV with the analytic
approximation of Sec. III. We start our discussion by re
eriving a fluctuation-induced effective potential for the sing
disk.

II. FLUCTUATION-INDUCED EFFECTIVE POTENTIAL
IN THE CASE OF A SINGLE DISK

In this section we derive afluctuation-induced effective
potentialper unit radial angle of a circular substrate from t
theory of wetting of a single disk@8#. We shall apply this
effective potential in the description of capillary condens
tion between two disks in Secs. III and IV below.

Consider a fluid system close to a first-order phase tr
sition line between two fluid phasesa and b. Roughly
speaking, fluctuations in such a system can be describe
what we shall call thebulk correlation lengthand define as

jb[kBT/s, ~1!

wheres is thestiffness~energy per unit length! of the a-b
interface,kB is the Boltzmann constant, andT is the tem-
perature@9#. Hence one can refer to bulk domains (a or

FIG. 1. Two two-dimensional disks of radiusr 0 lying at a dis-
tanceD. The wetting films surrounding each one of the disks~sep!
remain separated untilPb is sufficiently small to allow the forma-
tion of a bridging interface~bri!. The equilibriuma-b interface line
is described byr 01 l (u), whereu is measured from the line con
necting the centers of the two disks andu0 is the angular position of
the center of the bridge.
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b) in this system only if their typical sizer is much larger
than the bulk correlation length, i.e.,

r@jb . ~2!

When condition~2! is fulfilled, one can describe capillar
fluctuations of a two-dimensional (d52) a-b interface of an
underlying circular geometry by the phenomenologicalcap-
illary Hamiltonian ~see, for example, Ref.@8#!

H@r ~u!#5H0@r ~u!#1E
0

2p

W@r ~u!#du, ~3!

where

H0@r ~u!#5E
0

2p

duFsr ~u!1
s

2r ~u! S drdu D 2G ~4!

describes the fluctuations of the ‘‘free’’ interface andW(r )
is some r -dependent effective potential of local charac
~does not include derivatives ofr ) that accounts for all pos
sible constraints put on thea-b interface.r (u) measures the
local distance of the interface from the origin at a giv
angular positionu. The partition function of such a system
Z is calculated by

Z5E Drexp$2H@r ~u!#/kBT%, ~5!

whereDr is the functional measure for the integration ov
all possibler (u) functions satisfying the periodic boundar
condition

r ~0!5r ~2p!. ~6!

As discussed in Ref.@8#, whenW[0 and thea-b system
is governed only by the stiffness of thea-b interface and
thermal fluctuations, the sizer of the b-like domains pro-
duced by fluctuations does not satisfy condition~2!. How-
ever, the situation is different if a ‘‘b-preferring’’ circular
solid substrate is present in the system. Let us denote bg
such a two-dimensional disk-shaped substrate of radiusr 0
and suppose that the energy of creating ab-g interface is
much lower than the one involved in creating ana-g one.
Above a certain temperature~the wetting temperature!, the
preferredphaseb tends to form a layer intruding betwee
the substrate and the other phasea, even when the latter is
stable in the bulk. When the thickness of thisb like wetting
layer is much larger than the width of its interfaces with t
a andg phases, we say that theb-phase wets the disk. Th
width of those interfaces is comparable with the sum of
bulk correlation lengths involved. When the substrate is
solid, the width of the interfaces is solely determined by t
correlation lengths in thea and theb phases.

Denoting the thickness of the wetting film byl , one can
apply the interface Hamiltonian approach@6# only if @see
Eq. ~2!#

l@jb . ~7!
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55 1715CAPILLARY CONDENSATION BETWEEN DISKS IN TWO . . .
When condition~7! is fulfilled, capillary fluctuations of the
a-b interface are described by the capillary Hamiltonian~3!
with the periodic boundary conditions~6! and withW given
by @8#

W@r ~u!#5
1

2
Pb@r

2~u!2r 0
2#1du~r ,u!, ~8!

wherePb is a pressurelike field that measures the differe
in the grand canonical potentials per unit area between
a andb phases~at coexistence,Pb50) so that the first in
term Eq.~8! is proportional to the area of the wetting film
accounting for the bulk contribution coming from adsorbi
a thermodynamically unfavorable phase.u(r ) is an effective
substrate-interface interaction potential that accounts for
corrections toH coming from direct molecular interaction
and it contains the crucial hard-core part that excludes
a-b interface from the substrate area.

The mean thickness of the wetting filml W has recently
been determined by applying transfer-matrix techniques
calculate the partition function~5! with the boundary condi-
tions ~6! @8#. Criterion ~7! was shown to be satisfied only i
what we shall define asthe complete wetting regime

r 0@jb , TW,T,TC , s/r 0@Pb→0, ~9!

whereTC is the bulka-b critical point andTW is the wetting
temperature for the analogous planar system. In this reg
l W is given exactly by

l W5~3s!21/3~kBT!2/3z0
2/3Peff

21/3.1.238s21/3~kBT!2/3Peff
21/3,
~10!

where z0 is the zeroth solution for the equation for theJ
Bessel functions

J1/3~zn!52J21/3~zn!

and

Peff[Pb1s/r 0 .

It should be noted that in this study, the lower limit
jb is kBTW /s. In models for wetting in two dimension
TW can be very low@10# and jb can in principle go all the
way down to the molecular size.

Integrating the equation of state~10!, it is possible to
write an effective interface grand canonical potentialV( l ),
which has a minimum atl5 l W ,

V~ l !52pr 0
C~kBT!2

s l 2
12ps~r 01 l !1pPb@~r 01 l !22r 0

2#.

~11!

The termpPb@(r 01 l W)
22r 0

2# accounts for the excess en
ergy of the thermodynamically unfavorableb phase that
covers an area ofp@(r 01 l W)

22r 0
2#, 2ps(r 01 l ) is the self-

energy of the interface, and the first term represents the
of configurational entropy involved in preventing the inte
face from crossing the surface of the substrate@8#.
C.0.948 is a universal constant that doesnot depend on the
details of the molecular interactions in the system. Con
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quently, we define afluctuation-inducedeffective potential
per unit radial angle of a circular substrate as

V~ l ![0.948
r 0~kBT!2

s l 2
. ~12!

V( l ) is of longer range than the relevant van der Wa
substrate-interface interaction potential that is proportiona
r 0 / l

p23 in the limit l!r 0, wherep56,7 for nonretarded and
retarded interactions, respectively@8# and is therefore the
only relevant interaction potential in the problem@7#. Thus
potential ~12! has a very general applicability for circula
substrate-interface problems in two dimensions.

III. CAPILLARY CONDENSATION BETWEEN TWO
DISKS: SIMPLE CONSIDERATIONS

Imagine now a system consisting of two disks of the ty
described in Sec. II embedded in thea-b two-dimensional
matrix and found in the complete wetting conditions~9! for
the single disk~Fig. 1!. At coexistence,Pb→01, we can
roughly say that the excess free energy of the single dis
proportional to the length of thea-b interface surrounding it,
which is equal to 2p(r 01 l W)'2pr 0 @note that from Eq.
~10! l W}r 0

1/3!r 0#. At distancesD between the two disks fo
which

D,DC'pr 0'3r 0 , ~13!

the total length of an interface wrapping the two disks
gether, approximately equal to 2(D1pr 0) is shorter than the
sum of the two interfaces around two separated disks,
proximately equal to 2(2pr 0), making the creation of a
straightbridging interface~capillary condensation! energeti-
cally favorable.

Departing from thea-b coexistence,Pb.0, the bridging
interface curves so that it excludes the maximumb coverage
per a given length of interface~Fig. 1!. To get an idea of the
shape of this ‘‘bridging’’ interface, we fix its two~four! ends
at two ~four! symmetric points, mirror to the position
(f, r̄ ), wheref is the angular position of the meeting poi
between the wetting interface arcs, centered on the disks,
the bridging interface line, connecting the two wetting inte
faces.r̄[r 01 l̄ is the radius of the wetting arc, wherel̄ is the
mean thickness of the wetting film@11# ~Fig. 2!. If we ignore
for a while the direct effect of the substrates apart from s
ting the boundary conditions and the effect of the capilla
wave fluctuations, we get that the mean location of the bri
ing interfacey̆ is lying on a circle of radius

R̆5s/Pb , ~14!

which is determined by the Laplace pressures/R̆ that com-
pensates for thePb pressure.

We can make a rough estimate of the effect of fluctuatio
of the a-b bridging interface for small values of the fiel
Pb . For that we consider Cartesian coordinates with
horizontal axis (x) coinciding with the segment connectin
the centers of the two disks and with the origin in the midd
of this segment~Fig. 2!. The end points at which the bridgin
interface is fixed are now denoted byy(2x1) andy(x1) and
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1716 55TAMIR GIL AND JOHN H. IPSEN
the configurational fluctuations are assumed to be well
scribed by the capillary-wave Hamiltonian

H̃e@y~x!#5E
2x1

x1 FsS 11
yx
2

2 D 1PbyGdx. ~15!

Fixing the end points to the values determined by the m
location y̆, i.e., y(2x1)5y(x1)5 y̆(x1), the partition func-
tion of H̃e@y(x)# can readily be solved by standard pat
integral techniques@12,13#. The corresponding free energ
can be expressed as

Ve5H̃e@ ỹ~x!#2
kBT

2
lnS jb

4x1p
D

5kBTH 2x1jb
F11

ỹ~x1!

R̆
2
1

6 S x1
R̆
D 2G1

1

2
lnS 4x1pjb

D J ,
~16!

whereỹ(x) is the saddle-point configuration that functiona
minimizes Eq.~15! and is a parabolic approximation to th
circular y̆ that lies on a circle of radiusR̆ @Eq. ~14!#.
jb5kBT/s is the bulk correlation length~1!. The logarith-
mic contribution to the free energy is due to capillary-wa
fluctuations. It is clear that in the limit of interest, i.e
x1 /jb@1@x1 /R̆, this contribution is small compared to th
contribution coming from the saddle-point approximatio
Furthermore, this correction to the saddle-point approxim
tion is independent ofPb , meaning that the mean positio
ȳ(x) of thea-b bridging interface is not affected by therm
fluctuations. This situation is very different from the case
interfacial fluctuations close to a substrate~discussed in Sec

FIG. 2. Approximative construction for the equilibriuma-b in-
terface line. The arcs of radiusr5r 01 l W , centered on the two
disks, are connected by two tangential arcs of radiusR5s/Pb ,
which are determined by the Laplace pressures/R. The location of
the connecting points are given by (f,r ) and by (x1 ,y1), and by a
twofold symmetry, in polar and Cartesian coordinates, respectiv
e-

n

.
-

f

II !, which have a significant effect on the average position
the interface. In our model we can therefore ignore the c
tributions to the free energy coming from capillary fluctu
tions in the bridging regions while accounting for them in t
wetting regions.

A naive construction of a continuous interface line for t
system of two disks goes back to Ref.@14# and is illustrated
in Fig. 2. The wetting interface arcs of radiusr̄5r 01 l̄ , cen-
tered on the disks, are extended to bridge between the
disks by a tangential arc of radiusR̆5s/Pb @Eq. ~14!#. The
continuity is thus achieved merely by demanding

f5cos21@~D/2!/~ r̄1R̆!#, ~17!

wheref is the angular position of the point where the tw
interfaces meet each other~Fig. 2!. We couple the length of
the resulting interface to its effective stiffnesss and theb
coverage toPb , and after some manipulations we obtain t
following approximation for the grand canonical potent
per diskof the interface wrapping the two disks:

V15s@2r̄ ~p2f!2R̆~2f2p/2!#12~p2f!Ṽ~ r̄2r 0!

1PbF D/2
R̆1 r̄

A12S D/2

R̆1 r̄
D 2~r 0212r̄ R̆1R̆2!

1f~R22 r̄ 2!1p~ r̄ 22r 0
2!G , ~18!

where Ṽ( r̄2r 0)5Ṽ( l̄ ) is some repulsive interaction poten
tial, e.g., the fluctuation-induced potential~12!, that ensures
the existence of a wetting film and that is considered h
only for the region of the wetting interface of angular po
tion betweenf and 2(p2f). An approximative solution to
the problem can now be obtained by minimizingV1 with
respect tor̄ , but we will only extract some general prope
ties. The explicit dependence on the distance between
disks only comes through the dimensionless parameter@see
also Eq.~17!#

e[
D/2

r̄1R̆
'

D/~2r 0!

11
s

Pbr 0

!
3

4
, ~19!

considering thatD,Pr 0 @Eq. ~13!# ands/(Pbr 0).1 @Eq.
~9!#. This allows us to Taylor expand aroun
(D/2)/(r̄1R̆)50. The value ofr̄ that minimizesV1 obeys

2
]Ṽ~ r̄2r 0!

] r̄
5~s1Pr 0!F12

1

p

D/2

R̆1r 0
1OXS D/2

R̆1r 0
D 2CG .

~20!

Comparing with Eqs.~10! and ~11!, it is clear that the cor-
rection to the thickness of the wetting film around the dis
due to the bridging is small@O(e)#. We will therefore pro-
ceed by assumingṼ( l̄ )5V( l W) of Eq. ~12!.

By insertion of Eq.~20! into Eq.~18!, we find that the free
energy in the bridged configuration to lowest order ine has
the form

y.
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Ṽbri' fD1sp~r 01 l W!1pV~ l W!

1Pb

p

2
@~r 01 l W!222r 0

2#, ~21!

where the coefficientf5s1Pbr 0 signifies a constant attrac
tive force between the bridged disks up to a critical dista
D̃C5D̃C(T,s,Pb), at which the two disks separate. The r
lations between the border values ofs, Pb , andD at the
transition points between the bridged and the separated
figurations are approximately defined by settingṼbri equal to
potential~11! for the separated disk. Omitting then terms
the order of (l W /r 0)!1, one obtains

Pbr 0
2'sr 0S p2D̃C /r 0

D̃C /r 02p/2
D 1S 1

D̃C /~pr 0!21/2
DV~ l W!.

~22!

Hence, for a givenD, the values ofs andPb at the transi-
tion points relate to each other in an almost linear way.

It is noted that the discussion from Eqs.~20!–~22! only
applies to the limit of smallPb, where the properties of th
system can be expressed in terms of the wetting behavio
the separated disks. For larger values ofPb , the equilibrium
description of the bridging disks becomes more compl
Description ~18! involves the main assumption that th
fluctuation-induced wall potentialV is only important in the
wetting regionp2f>u>f, ignoring its continuously de-
caying effect on the bridging interface. This does not allow
free interplay among all leading effects in determining t
actual shape of the interface line. Rather it leads to the
natural discontinuity in the curvature of thea-b interface in
the meeting points between the wetting and bridging in
faces. In the following~Sec. V! we will evaluate approxima-
tion ~18! by comparison with numerical solutions for th
interface potential and see that it gives rise to small qua
tative errors.

IV. EFFECTIVE INTERFACE POTENTIAL
FOR THE CASE OF TWO DISKS

Sections II and III have taught us that the main contrib
tion of interfacial fluctuations to the free energy of our sy
tem comes from their exclusion by an unpenetrable subs
and is proportional to 1/l 2, wherel is their separation from
the substrate@15#. In approximation~18! this effect is limited
to the wetting films around the disks. However, in this s
tion we relax this limitation and include the contribution
the interfacial fluctuations in an effective interface poten
to describe capillary condensation between two disks.

The case of two separated wetting films is properly
scribed by the phenomenological potential~11!, which pro-
duces the correct equation of state~10! by minimization with
respect tol . However, in the case of the bridged configur
tion, the rotational symmetry of the interface configuratio
is broken, and it is necessary to include nonhomogene
(u-dependent! configurations in the effective potential de
scribing the system. In the spirit of the Landau theory,
make the natural extension of potential~11! to nonhomoge-
neous configurations, which vary at lengths much larger t
the interfacial correlation lengthj i @8#, and write an effective
e
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grand canonical potential per disk for the case of two disks
the complete wetting regime~9! @16#:

V@ l ~u!#52E
u0

p

dusA~r 01 l !21 l u
212E

u0

p

duV~ l !

1PbH 2F E
u0

p

du
~r 01 l !2

2 G1
D2

4
tanu02pr 0

2J ,
~23!

where a symmetry between the two disks and
l (u)5 l (2p2u) symmetry for each disk have been assum
l u[] l /]u andu0 is the angular position of the center of th
bridge~Fig. 1!. V( l ) is given by Eq.~12!. From left to right,
the first term inV@ l (u)# is the excess energy of the interfac
proportional to its length. The second term is the entro
term, accounting for the effect of the interfacial fluctuatio
in the vicinity of an unpenetrable substrate, and the th
term is the excess energy of having a thermodynamic
unfavorable bulk phase and is proportional to the coverag
the b phase@see also Eq.~11!#. The only explicit tempera-
ture dependence inV comes from theV( l ) term.s is also
temperature dependent, but it can be considered consta
long as the temperature does not enter the scaling regim
s, i.e., is not too close toTC , consistent with conditions~2!
and ~9!, which require that one not get too close toTC .

The separated and bridged cases differ from each othe
the boundary conditions~see Fig. 1!,

l u~u0!5H 0, u050 ~separated disks!

2D/~2sinu0!, u0.0 ~bridged disks!
~24!

and

l u~p!50 for both cases. ~25!

The interface linel (u) is the one minimizing potential~23!
under these boundary conditions, i.e., the solution to
Euler-Lagrange equation

d

du S ]V

] l u
D2

]V

] l
50. ~26!

SubstitutingV @Eq. ~23!# into Eq. ~26! results in the nonlin-
ear differential equation

05 l uu2~r 01 l !F11
2l u

2

~r 01 l !2G
2
1

s
@~r 01 l !21 l u

2#3/2F h

~r 01 l !
1
r 0~]V/] l !

~r 01 l !2 G . ~27!

Equation ~27! can only be solved numerically and it i
thus hard to analyze and understand the physics assoc
with description~23!. However, a comparison between th
numerical solutions and approximation~18! will provide
some understanding of the leading physical effects~see Secs.
V and VI!.
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V. COVERAGE OF THE WETTING PHASE,
AGGREGATION FORCE, AND PHASE BOUNDARIES

OF THE CONDENSED SYSTEM

In Secs. III and IV we have written a phenomenologic
approximation@Eq. ~18!# and a more rigorous effective po
tential @Eq. ~23!#, respectively, describing the capillary co
densation between two disks. We will now determine so
characteristic features of the capillary condensation and c
pare the two descriptions quantitatively in order to be able
evaluate approximation~18!.

We have solved Eq.~27! numerically using therelaxation
methodfor the two-value boundary problem@17#. Numerical
values of potential~23! for the bridged and the separate
configurationsVbri andVsep, respectively, are plotted in Fig
3 versus the pressure fieldPb . We relate a free-energy-like
functionF to those potentials by considering them to be
only relevant~coarse-grained! configurations and by weigh
ing them with the corresponding Boltzmann factor

F52kBTln@exp$2Vbri /kBT%1exp$2Vsep/kBT%#.
~28!

The behavior ofF at the point where the graphs o
Vbri(Pb) andVsep(Pb) meet~Fig. 3! indicates a first-order
phase transition between the two configurations in the th
modynamic limit. However, since we are not dealing with
thermodynamic limit and there is always a finite probabil

FIG. 3. Grand canonical potentials for the bridged~diamonds!
and the separated~squares! configurations are plotted against th
scaled field Pbr 0

2/kBT for r 051000, D52.5r 0, and
s/kBT58000/r 0. The free-energy-like function F5Vbri

2kBTln@11(Vbri2Vsep)/kBT# is represented by circles and clear
follows the minimal value of the grand canonical potential.
l

e
-
o

e

r-

for switching from the one configuration to the other, w
cannot really relate thermodynamic phases to the bridge
to the separated configurations, and the term ‘‘phase tra
tion’’ remains as a borrowed concept appealing only to
intuition. To differ from the three-dimensional case of tw
spheres@2#, no thin-bridge–thick-bridge transition is ob
served. Such a transition is not to be expected in the lo
dimensionality of two.

The features of the transition between the bridged and
separated configurations are nicely illustrated by two obse
ables, the coverageA of the b-like wetting phase and an
aggregation force Fthat pulls the disks together once
bridged configuration is created. These two observables
hibit a jump at the transition point. The coverage is natura
given as a function of the pressure fieldPb ~Fig. 4!, while
the aggregation force is given as a function of the dista
D between the disks~Fig. 5!.

The b coverage is defined formally byA5]F/]Pb @see
Eq. ~28!#. In Fig. 4 it is calculated in two ways: In the firs
way Eq. ~27! is solved numerically andA is calculated by
‘‘Boltzmann averaging’’ onAbri andAsepfor the bridged and
separated configurations, respectively. In the second waA
is calculated by]V1 /]Pb derived from approximation~18!.
The two resulting graphs lie very close to each other. Ho
ever, the values of]V1 /]Pb are slightly lower, leading to a

FIG. 4. Scaledcoverageof theb phaseA/r 0
2 plotted against the

scaled fieldPbr 0
2/kBT. r 051000 ands/kBT58000/r 0. Three dif-

ferent values of separationD between the disks are considere
D/r 053.0 ~circles!, 2.75~squares!, and 2.5~diamonds!, where it is
observed that atD52.5r 0 the disks remain bridged within the com
plete wetting regime. The dashed lines are derived from appr
mation ~18! for the grand canonical potential. The values
Pbr 0

2/kBT above which the wetting films are separated, and wh
A/r 0

2 goes effectively to zero, fall with the growth ofD.
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separation at higher values ofPb .
The aggregation forceF is given byF[22]F/]D @18#,

whereF is the free energy~28!. When plottingF against
D with a zeroPb field, we observe that the disks separate
D/r 0'3.15 ~Fig. 5! as expected from estimate~13! for
DC . The correspondingb coverage in Fig. 4, namely
A(Pb→0,D/r 053), agrees with the simple estimate
AC /r 0

2'2DC /r 02p'3. As Pb→0, Vbri is given by Eq.
~21! so thatF[22]F/]D is given by 2f52(s1Pbr 0). In
Fig. 5 we indeed see thatF(Pb50)52s. For values of
Pb larger than zero,F falls almost linearly with the distanc
D, exhibiting a negativeslope of a size increasing wit
Pb . One can clearly see how the actual values ofF depart
from the asymptotic value ofF52 f asPb is increased. But
F1[22dV1 /dD, derived from approximation~18!, fits
very well to the numerical solutions of Eq.~27!. A particu-
larly compact form forF is obtained by taking the limit
r5r 0. This changes the curves ofF15dV1(r )/dD in a neg-
ligible way, but yields

2

s

dV1~r5r 0!

dD
52

11hS 12
~D/2r 0!

2

111/h D
A12S D/2r 0111/hD

2 , ~29!

whereh[Pbr 0 /s is a dimensionless field.
Following the position of the transition between th

bridged and the separated configurations in the (sr 0 ,Pbr 0
2)

FIG. 5. Scaledaggregation force F/s versus the distance
D/r 0. r 051000, s/kBT53000/r 0, and Pbr 0 /s50 ~circles!, 0.4
~squares!, and 0.8~diamonds!. The dashed lines are derived fro
approximation ~18!. The dotted lines are the values o
2 f /s52(11Pbr 0 /s) @see Eq.~21!#, valid at the limit ofPb→0.
The value ofF/s increases withPb , while its range decreases.
t

space, we observe an approximately linear behavior~Fig. 6!.
For very low values of the fieldPb , this behavior was ana-
lyzed in Eq.~22!. At large values ofPb , Eq. ~22! deviates
from the graphs coming from the numerical solutions of E
~27! and approximation~18!. Nevertheless, Eqs.~27! and
~18! agree with each other very well, maintaining the almo
linear behavior~Fig. 6!.

The two examples above, Figs. 5 and 6, have dem
strated that there is a region of positive values ofPb , close
to zero, in which approximation~21! is applicable. In all
cases~Figs. 4–6!, approximation~18! agrees very well with
the numerical solutions of Eq.~27!.

VI. CONCLUSION

In conclusion, we have studied capillary condensation b
tween two disks in two dimensions as an extension of
theory recently advanced for the wetting of a single disk. O
model has not been restricted to any specific system an
can be applied to any two-dimensional problem that involv
wetting of disks. Moreover, our approach can easily be e
tended to describe aggregation phenomena among more
two ‘‘wetted’’ disklike objects in two dimensions. Such phe
nomena may be observable in lipid membranes with lar
but finite inclusions and near a first-order phase transition~or
phase separation! in the membrane.

We have rigorously shown that in two dimensions, whe

FIG. 6. Values of the scaled fieldPbr 0
2/kBT against the scaled

stiffness of the interfacesr 0 /kBT at the transition between the
bridged and the separate configurations for three different value
the distance between the disks,D/r 052.75, 2.90, and 3.05, where
r 051000. The dashed lines are calculated from approximation~18!.
The dotted lines are given by approximation~22!, valid at the limit
of Pb→0.
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capillary-wave fluctuations play a dominant role, capilla
condensation between two disks can be described with
simple mean-field framework similar to that used to descr
capillary condensation between two spheres in three dim
sions@2# @see Eq.~23!#. This is made possible by the prop
inclusion of the disjoining pressure, which stabilizes the w
ting films around the disks against chemical and hydrost
pressures that tend to diminish it. In two dimensions, t
disjoining pressure is dominated by the fluctuations indu
effective potential~12!, which is exact and universal an
overrules the effects coming from van der Waals interact
potentials. Hence, unlike the disjoining pressure in three
mensions, it does not depend on the molecular details
does it rely on anya priori assumption concerning the natu
of the molecular interactions, e.g., the additive interact
energy between the volume elements~see Refs.@19# and
@2#!. This fundamental difference between the two- and
three-dimensional systems, together with the difference
geometry, which is reflected, for example, in the fact th
prewettinglike transitions are found in three dimensions,
not in two @20,8#, gives rise to different wetting behaviors

The effective interfacial free energy for the wetting inte
face close to a circular substrate above the wetting temp
ture is the basis for the description of the capillary cond
sation between two disks. Capillary condensation betw
two wet disks occurs already when the distance between
substrates is of order of their radiusr 0. It involves a dramatic
increase in the local concentration~or rather the coverage! of
the wetting phase~see Fig. 4! and introduces a new effectiv
force in the system, giving rise to a net attraction betwe
the disks~see Fig. 5!. The detailed description of this phe
nomenon can be obtained by the use of analytical appr
mation schemes or a numerical approach to obtain the in
face configuration, which minimizes the interfacial fre
energy@2,3#. The analytical approximation~18! is based on a
ys
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simple construction~see Fig. 2! in which the differentiability
of the interface configuration is relaxed in the small regio
where the interface is detaching from the single disk
bridge between the two disks. We have systematically sho
@Eq. ~16!# that the effect of capillary-wave fluctuations
negligible in the regions where the interface is bridging b
tween the two disks and, by an expansion around a sm
parameter@Eq. ~20!#, to a leading order the thickness of th
remaining wetting film is given by the theory for the sep
rated disk. To complete the picture, we have shown by co
parison ~Sec. V! that the simple analytical approximatio
~18! of the equilibrium interface potential gives a very goo
description of the condensation phenomena that is more
orously defined by potential~23!.

The advantage of approximation~18! lies in the ability to
evaluate the relative weights of the different contributions
the interface potential and to systematically calculate asy
totic behaviors for limit values of the different paramete
For example, very close to the phase transitionPb→0, the
aggregation of the disks can be expressed in terms of
wetting of the single disk and the attractive force betwe
the aggregated disks is approximatively constant and of
F52(s1Pbr 0) @see Eq.~21!#. Further, Eq.~18! adds only
three unknowns—the fluid-fluid interfacial tension, the d
tance between the disks and their radii—to the laborat
controlled fields~temperature and pressure!. This gives it a
predictive power and makes it suitable in the analysis
experimental results.
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