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Capillary condensation between disks in two dimensions
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Capillary condensation between two two-dimensional wetted circular subsfdisés is studied by an
effective free energy description of the wetting interface. The interfacial free-energy potential is developed on
the basis of the theory for the wetting of a single disk, where interfacial capillary fluctuations play a dominant
role. A simple approximative analytical expression of the interfacial free energy is developed and is validated
numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed
phase, its stability, and asymptotic behaviors. The theory can be applied to the description of flocculations in
two-dimensional systems of colloidsS1063-651X97)05802-9

PACS numbgs): 68.45.Gd, 87.22.Bt, 64.70.Fx

I. INTRODUCTION interface close enough to the surface of the substrate, the
mean thickness of the wetting film is determined by the bal-
The close relationship between wettability of surfacesance between disjoining pressurginduced by the capillary
nucleation, and condensation phenomena is of great impofluctuations and tending to enlarge the mean thickness, and
tance in many natural and technological processes. The foexternal pressures that tend to diminish it, e.g., hydrostatic
mation of a liquid phase from a gaseous phase between solRfessure or gravity. Such a phenomenological picture was
surfaces, so-calledapillary condensationprovides a classi- recently shown to apply to the wetting of a large circular
cal example. Recently, it has been pointed out on the basis gubstratedisk) if a Laplace pressure is added to the pressure
experimental observations that wetting of the surfaces in &alance in the wetting filni8]. The mean thickness of the
colloidal suspension may be the cause of flocculation due twetting film then grows Iikeré’3, for rg—oo, wherer is the
capillary condensatiofil]. In this work we investigate the radius of the substra{@] (see Sec. )l Hence a macroscopic
conditions for this effect in a two-dimensional system. wetting film of thickness much larger than the molecular
Capillary condensation in spherical geometry has beedlistances emerges at large values gfvalidating the use of
considered theoretically by use of mean-field theory of arinterface models in which the density profile of the fluid-
effective interfacelescription of the configuration of the wet- fluid interface is replaced by a sharp kink to which a local
ting film around spherel2] and around lines and lattices of interfacial stiffness is attachd®]. In this paper we expand
cylinders[3]. In the present paper we extend this work to thethe effective interface potential of the single disk to the case
two-dimensional analogous system of two disks and concersf two disks by adding dluctuation-inducegotential (Sec.
trate on some additional aspects, e.g., the wetting-induceld) to the interface potential of Ref2] (Sec. IV). In this way
aggregation of the disks. Further, our study is motivated bye include the dominating effect of the long-wavelength
the rich properties of biological membranes. Biomembranefluctuations though remaining in the simple mean-field
are quasi-two-dimensional systems that display in-planédramework of Ref[2].
phase transitions and phase separations under natural condi-Under the conditions that trigger wetting of a single disk,
tions[4]. Therefore, wetting effects may appear in the presdringing two disks close to each other, gives rise to two
ence of large inclusions, such as large integral protéms expected topologies of the fluid-fluid interface line between
rather complexes of themThe biophysical significance of the wetting phase and the thermodynamically stable phase in
our results will be discussed elsewh¢gtg. the background: one of twseparateloops, closing around
There is a crucial difference between wetting phenomenaach one of the disks individuallfFig. 1 (sep], and one of
in two and three spatial dimensions that is due to the renora single loop wrapping the two diskBig. 1 (bri)]. The latter
malizing effect of the capillary-wave fluctuations of the in- is due tocapillary condensatiorbetween the two disks. A
terface between the wetting phase and the thermodynamiransition between theeparatedand bridged configurations
cally stable phase in the background. Becatlseeis the can be induced either by tuning the distance between the
marginal dimension for this renormalizing effe], the  disks or by changing the thermodynamic conditions for the
relative importance of these fluctuations for the thermodysystem, e.g., the chemical potential difference between the
namics of wetting phenomena in three dimensions is exwetting phase and the background phase. This transition can
pected to be small compared with the direct forces involvedbe characterized, for example, by the discontinuous jump in
e.g., van der Waals forces. In two dimensions thotme- the coverageof the wetting phase or in thaggregation
dimensional interfagethe capillary-wave fluctuations play a force, both jumps occurring as capillary condensation takes
dominant role giving rise to an effective long-range repulsiveplace. The aggregation force is caused by the tendency of the
force between the substrate and the fluid-fluid interface andondensed system to reduce the length of the interface and
exclude the possibility of prewetting transitiof®,7]. As a  the coverage of the thermodynamically unstable wetting
result, once direct substrate-interface interactions are nqgthase by reducing the distance between the disks and is of
strong enough(above the wetting temperatyra hold the  course vanishing when the disks separate. In Sec. V, we
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B) in this system only if their typical size is much larger
than the bulk correlation length, i.e.,

r>¢&. (2

When condition(2) is fulfilled, one can describe capillary
fluctuations of a two-dimensionall& 2) «-8 interface of an
underlying circular geometry by the phenomenologicab-
illary Hamiltonian (see, for example, Ref8])

2w

H[r(é’)]=Ho[r(9)]+f WLr(6)]de, )
FIG. 1. Two two-dimensional disks of radiug lying at a dis- 0
tanceD. The wetting films surrounding each one of the digsep
remain separated unfil,, is sufficiently small to allow the forma- where
tion of a bridging interfacébri). The equilibriumea-g interface line
is described by o+1(6), where§ is measured from the line con- 2
necting the centers of the two disks afiis the angular position of Holr(0)]= f de
the center of the bridge. 0

or(6)+

5l
2r(6)\de @

discuss those features and illustrate them graphically in agiescribes the fluctuations of the “free” interface av(r)
dition to calculating the relations among the thermodynamidS Somer-dependent effective potential of local character
parameters at the points where the capillary condensatiotfioes not include derivatives oj that accounts for all pos-
occurs. sible constraints put on the-3 interface.r (4) measures the
Even though the problem of capillary condensation belocal distance of the interface from the origin at a given
tween two disks is very much simplified by the use of anangular positiond. The partition function of such a system
effective interfacial potential, the equilibrium form of this Z is calculated by
potential, which we write in Sec. IV, can only be obtained
numerically. However, an analytical approximation of this
potential can be reached by splitting the system into two
systems that effect each other only through the boundary

conditions: one system describing the fluid-fluid interface fanyhereDr is the functional measure for the integration over

from the substrate, in the region between the two disks, angli| possibler (6) functions satisfying the periodic boundary
the other system describing the fluid-fluid interface in thecondition

regions where it wraps the rest of the disks. In Sec. lll, the

effect of capillary-wave fluctuations and the boundary con- r(0)=r(2m). (6)
ditions on the analytical approximation are discussed and
asymptotic properties are derived. In Sec. V we compare the
effective interfacial potential of Sec. IV with the analytical
approximation of Sec. Ill. We start our discussion by red-
eriving a fluctuation-induced effective potential for the single

zZ= f Drexpl—H[r(6)]/ksT}, (5)

As discussed in Ref8], whenW=0 and thex-8 system
is governed only by the stiffness of the B interface and
thermal fluctuations, the size of the B-like domains pro-
duced by fluctuations does not satisfy conditi@. How-

disk. ever, the situation is different if a 8-preferring” circular
solid substrate is present in the system. Let us denote by
[l. FLUCTUATION-INDUCED EFFECTIVE POTENTIAL such a two-dimensional disk-shaped substrate of radjus

IN THE CASE OF A SINGLE DISK and suppose that the energy of creating-g interface is
. . . o , much lower than the one involved in creating ary one.

In this section we derive #8uctuation-induced effective Above a certain temperaturghe wetting temperatuyethe
potentialper unit radial angle of a circular substrate from thepreferred phaseg tends to form a layer intruding between
theory of wetting of a single disk8]. We shall apply this o 5 \hsirate and the other phaseeven when the latter is
gffective potential i_n thg description of capillary Condensa'stable in the bulk. When the thickness of tjfidike wetting
tion betvyeen tWO. disks in Secs. Ill and'IV below. layer is much larger than the width of its interfaces with the

_ .Con.S|der a fluid system c_Iose to a first-order phase tranz " » phases, we say that th@phase wets the disk. The
sition .I'ne betwe(_an two fluid phases and p. Roughly width of those interfaces is comparable with the sum of the
speaking, fluctuations in such a system can be dgscrlbed tBﬁlk correlation lengths involved. When the substrate is a
what we shall call théoulk correlation lengthand define as solid, the width of the interfaces is solely determined by the

correlation lengths in ther and theB phases.
&o=kgT/o, ) Denoting the thickness of the wetting film byone can
apply theinterface Hamiltonian approach6] only if [see
where o is the stiffness(energy per unit lengdhof the -3 EQ. (2)]
interface,kg is the Boltzmann constant, and is the tem-
perature[9]. Hence one can refer to bulk domaina Er I>¢,. 7



55
When condition(7) is fulfilled, capillary fluctuations of the
a-B interface are described by the capillary Hamilton{@p
with the periodic boundary conditior(§) and withW given
by [8]

1 2 2
W[r(0)]=§1'[b[r (6)—rgl+du(r,6), (8
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quently, we define dluctuation-inducecdeffective potential
per unit radial angle of a circular substrate as

ro(kgT)?

V(1)=0.948=—— (12)

V(I) is of longer range than the relevant van der Waals
substrate-interface interaction potential that is proportional to

wherell,, is a pressurelike field that measures the difference /1P~ in the limit | <r o, wherep=6,7 for nonretarded and
in the grand canonical potentials per unit area between theetarded interactions, respectivel@] and is therefore the

a and B phasedqat coexistencell,=0) so that the first in
term Eq.(8) is proportional to the area of the wetting film

only relevant interaction potential in the probld@]. Thus
potential (12) has a very general applicability for circular

accounting for the bulk contribution coming from adsorbing substrate-interface problems in two dimensions.

a thermodynamically unfavorable phasér) is an effective

substrate-interface interaction potential that accounts for the |j|. CAPILLARY CONDENSATION BETWEEN TWO

corrections toH{ coming from direct molecular interactions

DISKS: SIMPLE CONSIDERATIONS

and it contains the crucial hard-core part that excludes the

a-B interface from the substrate area.
The mean thickness of the wetting filhg, has recently

Imagine now a system consisting of two disks of the type
described in Sec. 1l embedded in theB two-dimensional

been determined by applying transfer-matrix techniques téhatrix and found in the complete wetting conditiof® for

calculate the partition functio(b) with the boundary condi-
tions (6) [8]. Criterion (7) was shown to be satisfied only in
what we shall define athe complete wetting regime

9

whereT is the bulka-g critical point andTy, is the wetting

I’0>§b, TW<T<TC! O'/r0>Hb—>O,

temperature for the analogous planar system. In this regime

Iy is given exactly by
[ W= (30.) - 1/3( kBT) 2/323/31—[ e—ﬁ1/3: 1.238 " 1/3( kBT) 2/31‘[ e_ffl/3 ’
(10)

where z; is the zeroth solution for the equation for tle
Bessel functions

Ja(Zn) = —I-15(Zp)
and
HeﬁEHb‘I‘ O'/ro.

It should be noted that in this study, the lower limit of
&y is kgTw/o. In models for wetting in two dimensions
Tw can be very low[10] and &, can in principle go all the
way down to the molecular size.

Integrating the equation of staid0), it is possible to
write an effective interface grand canonical potenfill),
which has a minimum dat=1,,,

C(kBT)Z 2
Q(|)=277r0—0_2—+2770'(r0+|)+ allg[(ro+1)%—rg].

I
11
The terma-er[(ro+IW)2—r§] accounts for the excess en-

ergy of the thermodynamically unfavorabj@ phase that
covers an area of{ (ro+lw)?— rg], 2o (ro+1) is the self-

the single disk(Fig. 1). At coexistencell,—0", we can
roughly say that the excess free energy of the single disk is
proportional to the length of the-3 interface surrounding it,
which is equal to Zr(rg+I)~27r, [note that from Eq.
(10) lywecrgB<rg]. At distancesD between the two disks for
which
D<DC%7TrON3r0, (13)
the total length of an interface wrapping the two disks to-
gether, approximately equal toR( 7rr ) is shorter than the
sum of the two interfaces around two separated disks, ap-
proximately equal to 2(2r,), making the creation of a
straightbridging interface(capillary condensatigrenergeti-
cally favorable.

Departing from thex-B coexistencell,> 0, the bridging
interface curves so that it excludes the maximgrooverage
per a given length of interfacdig. 1). To get an idea of the
shape of this “bridging” interface, we fix its twfour) ends
at two (four) symmetric points, mirror to the position
(¢,r), where o is the angular position of the meeting point
between the wetting interface arcs, centered on the disks, and
the bridging interface line, connecting the two wetting inter-
facesr=r,+1 is the radius of the wetting arc, whelrés the
mean thickness of the wetting filii1] (Fig. 2). If we ignore
for a while the direct effect of the substrates apart from set-
ting the boundary conditions and the effect of the capillary-
wave fluctuations, we get that the mean location of the bridg-

ing interface§/ is lying on a circle of radius

R=o/Il,, (14)
which is determined by the Laplace pressm’& that com-
pensates for th&l,, pressure.

We can make a rough estimate of the effect of fluctuations
of the «-B bridging interface for small values of the field

energy of the interface, and the first term represents the lodd,,. For that we consider Cartesian coordinates with the
of configurational entropy involved in preventing the inter- horizontal axis x) coinciding with the segment connecting

face from crossing the surface of the substrdf.
C=0.948 is a universal constant that dows depend on the

the centers of the two disks and with the origin in the middle
of this segmen(Fig. 2). The end points at which the bridging

details of the molecular interactions in the system. Conseinterface is fixed are now denoted By—x;) andy(x;) and
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FIG. 2. Approximative construction for the equilibriuaxg3 in-
terface line. The arcs of radius=ry+I,, centered on the two
disks, are connected by two tangential arcs of radRuso/II,,
which are determined by the Laplace pressuB. The location of
the connecting points are given by () and by &,,y;), and by a

twofold symmetry, in polar and Cartesian coordinates, respectively.

the configurational fluctuations are assumed to be well de-

scribed by the capillary-wave Hamiltonian

2
Yx
43

X1
(oa

Hdyol- [

+1I,y |dX. (15

X1
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I, which have a significant effect on the average position of
the interface. In our model we can therefore ignore the con-
tributions to the free energy coming from capillary fluctua-
tions in the bridging regions while accounting for them in the
wetting regions.

A naive construction of a continuous interface line for the
system of two disks goes back to RE4] and is illustrated
in Fig. 2. The wetting interface arcs of radiusr,+1, cen-
tered on the disks, are extended to bridge between the two

disks by a tangential arc of radiis= olll, [Eq. (14)]. The
continuity is thus achieved merely by demanding

$=cos [(D/2)/(r+R)], (17)

where ¢ is the angular position of the point where the two
interfaces meet each othé¥ig. 2). We couple the length of
the resulting interface to its effective stiffnegsand theg
coverage tdI,, and after some manipulations we obtain the
following approximation for the grand canonical potential
per diskof the interface wrapping the two disks:

Qi=0[2r(m—¢)—R(2p—7/2)]+2(7m— $)V(r—ty)
D/2 D2 \° .
——\/1-| =——=] (r3+2rR+R?)
R+r R+r

+¢<R2—7>+w<?—ré>],

+11,

(18

whereV(r—ry)=V(l) is some repulsive interaction poten-
tial, e.g., the fluctuation-induced potentidl2), that ensures
the existence of a wetting film and that is considered here

Fixing the end points to the values determined by the meaRNIY for the region of the wetting interface of angular posi-
R _ - . tion betweeng and 2 (@ — ¢). An approximative solution to
locationy, i.e., y(—x;)=Y(X1) =Y(X1), the partition func-

th bl be obtained by minimizi ith
tion of H[y(x)] can readily be solved by standard path- @ problem can now be obtained by minimizifly wi

) ) . respect tor, but we will only extract some general proper-
integral technique$12,13. The corresponding free energy tio The explicit dependence on the distance between the
can be expressed as

disks only comes through the dimensionless paranjstsr

o also Eq.(17)]
~ B b
Q= -
e~ HelY(X)]— = ”(4X17T) D/2_ DI(2ry) _3 19
EE—o <,
T 2xl 1+'37(x1) 1% 2 Jr1I 47 r+R 1+ Har 4
= — —— =<| — =in )
B & R 6\ R 2 &y "0

considering thaD <Ilr, [Eq. (13)] and o/ (ITyrg) >1 [Eq.
(9)]. This allows us to Taylor expand around

wherey(x) is the saddle-point configuration that functionally (D/2)/(r + R)=0. The value of that minimizes(2, obeys
minimizes Eq.(15) and is a parabolic approximation to the 5
1 D/2
1-—< +0 .

circular y that lies on a circle of radiuRR [Eq. (14]. 3V(f_;ro)
T R+rg
(20)

(16)

D/2

=(o+1Ilry) S
( 0 R+rg

¢,=kgT/o is the bulk correlation lengtlil). The logarith- ar
mic contribution to the free energy is due to capillary-wave
fluctuations. It is clear that in the limit of interest, i.e.,

X, /&>1>x, IR, this contribution is small compared to the Comparing with Eqs(10) and (11), it is clear that the cor-
contribution coming from the saddle-point approximation.rection to the thickness of the wetting film around the disks
Furthermore, this correction to the saddle-point approximadue to the bridging is smajlO(e)]. We will therefore pro-
tion is independent ofl,,, meaning that the mean position ceed by assuminy(1)=V(ly) of Eq. (12).

y(x) of the -3 bridging interface is not affected by thermal By insertion of Eq(20) into Eq.(18), we find that the free
fluctuations. This situation is very different from the case ofenergy in the bridged configuration to lowest ordefkihas
interfacial fluctuations close to a substrédéscussed in Sec. the form
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ﬁbriwa +om(rg+lyw) +7V(ly) grand canonical potential per disk for the case of two disks in
the complete wetting regime) [16]:

Q[I(H)]=2L7Td0cr\/(ro+I)2+I7(,+2Lwd0V(l)
J” (ro+1)?

m
+p 5 [(ro+1w)?—2rg], (21)

where the coefficient= o+ I1r o signifies a constant attrac-
tive force between the bridged disks up to a critical distance
Dc=D¢(T,0o,I1,), at which the two disks separate. The re-
lations between the border values @f I1,,, andD at the
transition points between the bridged and the separated con- (23
figurations are approximately defined by settidg; equal to
potential(11) for the separated disk. Omitting then terms of
the order of {\/rg)<<1, one obtains

2 do

A 2

+11,

D2 5

where a symmetry between the two disks and a
1(8)=1(27— 6) symmetry for each disk have been assumed.
l4=0l/06 and 6, is the angular position of the center of the
bridge (Fig. 1). V(I) is given by Eq.(12). From left to right,
)V(|w)- the first term inQ[1(6)] is the excess energy of the interface
proportional to its length. The second term is the entropy
(22 term, accounting for the effect of the interfacial fluctuations
in the vicinity of an unpenetrable substrate, and the third
term is the excess energy of having a thermodynamically
unfavorable bulk phase and is proportional to the coverage of
the B phase[see also Eq(11)]. The only explicit tempera-
ture dependence i@ comes from the/(l) term. o is also

W_Bclro

Dc/ro_’ﬂlz

Hbrg~0r0

De/(mrg)—1/2

Hence, for a giverD, the values ofr andIl, at the transi-
tion points relate to each other in an almost linear way.

It is noted that the discussion from Eq20)—(22) only
applies to the limit of smalll,, where the properties of the

system can be expressed in terms of the wetting behavior ? mperature dependent, but it can be considered constant as

the se_pe_lrated disks. I_:or_large_r valuedlgf, the equilibrium long as the temperature does not enter the scaling regime for
description of the bridging disks becomes more complex.

S ; . ; o, i.e., is not too close td -, consistent with condition
DeSCI’Ip.tIOI’]' (18) involves the main assgmptlon that the and (9), which require thatcone not get too closeTg. ®
fluctuation-induced wall potentidl is only important in the The separated and bridged cases differ from each other in
wetting regionw— ¢= 6= ¢, ignoring its continuously de- h o Ei
caying effect on the bridging interface. This does not allow at e boundary conditionsee Fig. 1,
free interplay among all leading effects in determining the _ :
actual shape of the interface line. Rather it leads to the un- | 00):{0’ . 60=0 (separateQ dishs
natural discontinuity in the curvature of the 3 interface in —D/(2sindy), 6,>0 (bridged disks
the meeting points between the wetting and bridging inter- (24)
faces. In the followingSec. \) we will evaluate approxima-
tion (18) by comparison with numerical solutions for the and
interface potential and see that it gives rise to small quanti-

tative errors. l4(m)=0 for both cases. (25)
IV. EFFECTIVE INTERFACE POTENTIAL The interface lind () is the one minimizing potentia3)
FOR THE CASE OF TWO DISKS under these boundary conditions, i.e., the solution to the

Euler-Lagrange equation
Sections Il and Il have taught us that the main contribu-

tion of interfacial fluctuations to the free energy of our sys- d (oQ) 90
tem comes from their exclusion by an unpenetrable substrate ﬁ(&T) T
X . : . . 9

and is proportional to 17, wherel is their separation from
e s 1 e s SUBSULUNG) [E0.(29] o €426 fesls n e ol
tion we relax this limitation and include the contribution of €2 differential equation
the interfacial fluctuations in an effective interface potential
to describe capillary condensation between two disks.

The case of two separated wetting films is properly de-
scribed by the phenomenological potential), which pro-
duces the correct equation of stai€) by minimization with _ 1 2. 1273/

. X , [(ro+1)o+1%] Z[
respect td. However, in the case of the bridged configura- o
tion, the rotational symmetry of the interface configurations
is broken, and it is necessary to include nonhomogeneous Equation(27) can only be solved numerically and it is
(#-dependent configurations in the effective potential de- thus hard to analyze and understand the physics associated
scribing the system. In the spirit of the Landau theory, wewith description(23). However, a comparison between the
make the natural extension of potentfall) to nonhomoge- numerical solutions and approximatidid8) will provide
neous configurations, which vary at lengths much larger thasome understanding of the leading physical eff¢st® Secs.
the interfacial correlation lengtfy [8], and write an effective  V and VI).

(26)

212

_ . 0
0=lgy=(ro+ | 1+ 77z

h  re(aVial)
(fo+ D) (ro+1)2

. (27
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FIG. 3. Grand canonical potentials for the bridgeliamond$ FIG. 4. Scalectoverageof the 8 phaseA/r; plotted against the

and the separatetsquares configurations are plotted against the Scaled fieldllyrg/kgT. ro=1000 anda/kgT=8000f,. Three dif-
scaled field Il,rZ/keT for ro=1000, D=2.5, and ferent values of separatioD between the disks are considered:
o/ksT=8000f,. The free-energy-like function F=Q,, D/ry=3.0(circles, 2.75(squares and 2..5(di:.;lmond$,. Where it is
—KgTIN[1+(Qyi— Qe /KsT] is represented by circles and clearly observed that db = 2.5, the disks remain bridged within the com-

follows the minimal value of the grand canonical potential. plete wetting regime. The dashed lines are derived from approxi-
mation (18) for the grand canonical potential. The values of
V. COVERAGE OF THE WETTING PHASE Hbrf,/kBT above which the wetting films are separated, and where
AGGRiEGATION FORCE. AND PHASE BOUNDARIES Alr? goes effectively to zero, fall with the growth &f.

OF THE CONDENSED SYSTEM o . .
for switching from the one configuration to the other, we

In Secs. Il and IV we have written a phenomenologicalcannot really relate thermodynamic phases to the bridged or
approximation[Eq. (18)] and a more rigorous effective po- to the separated configurations, and the term “phase transi-
tential [Eq. (23)], respectively, describing the capillary con- tion” remains as a borrowed concept appealing only to the
densation between two disks. We will now determine soméntuition. To differ from the three-dimensional case of two
characteristic features of the capillary condensation and conspheres[2], no thin-bridge—thick-bridge transition is ob-
pare the two descriptions quantitatively in order to be able tserved. Such a transition is not to be expected in the lower
evaluate approximatiofiL8). dimensionality of two.

We have solved Eq27) numerically using theelaxation The features of the transition between the bridged and the
methodfor the two-value boundary problefii7]. Numerical  separated configurations are nicely illustrated by two observ-
values of potential23) for the bridged and the separated ables, the coveragd of the g-like wetting phase and an
configurations},,; and() ., respectively, are plotted in Fig. aggregation force Fthat pulls the disks together once a
3 versus the pressure field,. We relate a free-energy-like bridged configuration is created. These two observables ex-
function F to those potentials by considering them to be thehibit a jump at the transition point. The coverage is naturally
only relevant(coarse-graingdconfigurations and by weigh- given as a function of the pressure fidlH, (Fig. 4), while

ing them with the corresponding Boltzmann factor the aggregation force is given as a function of the distance
D between the disk&Fig. 5).
F=—KkgTIn[exp{ — Qy,i/KgT}+exp{ — Qee/KgT}]. The B coverage is defined formally b= d.F/ oIl [see

(28 Eq. (28)]. In Fig. 4 it is calculated in two ways: In the first
way Eq. (27) is solved numerically and\ is calculated by
The behavior of 7 at the point where the graphs of “Boltzmann averaging” orA,; andAg.,for the bridged and
Qpri(Ilp) and Q4 (I1,) meet(Fig. 3 indicates a first-order separated configurations, respectively. In the second Avay
phase transition between the two configurations in the theiis calculated by, /d11,, derived from approximatiofl8).
modynamic limit. However, since we are not dealing with aThe two resulting graphs lie very close to each other. How-
thermodynamic limit and there is always a finite probability ever, the values of(), /Il are slightly lower, leading to a
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FIG. 5. Scaledaggregation force Fo versus the distance FIG. 6. Values of the scaled fielﬂbrﬁlkBT against the scaled

D/ro. 19=1000, U/k.BT:?’OOOtO’ and Hbro_/o—:o (cwcle_s), 04 tiffness of the interfacerr o /kgT at the transition between the
(squargs a?d 0.8(diamonds. The daghed lines are derived from bridged and the separate configurations for three different values of
approximation (18). The dotted Ilngs are .thle values of . ictance between the disiylr o= 2.75, 2.90, and 3.05, where
2M/0= 2(1+Hbr°./0) [see Eq_.(21)], val!d "’_It the limit ofII,—0. ro=1000. The dashed lines are calculated from approximafi6n

The value ofF/o increases witHI,,, while its range decreases. The dotted lines are given by approximati@®), valid at the limit
separation at higher values Hf, . of IT,—0.

The aggregation force is given byF=~297/D [18], space, we observe an approximately linear beha¥iigy. 6)
where 7"is the free energy28). When plottingF against For very low values of the fieldl,, this behavior was ana-

D with a zeroll,, field, we observe that the disks separate atlyzed in Eq.(22). At large values ofll,, Eq.(22) deviates
. . b .

B/rog:l'ijsc(olilrg.s 5())n3isngeexp§oc\zg(rja f;orinn elfitlmitﬂﬁ)a;'oél from the graphs coming from the numerical solutions of Eq.

A(CH —0D/r —3‘; agrees with ?he sim ?e e,stimate y()f (27) and approximation(18). Nevertheless, Eqd27) and
b0 eh 9 mple (18) agree with each other very well, maintaining the almost

Aclrg=2Dc/ry—m=3. A_s H_bﬂo, Q,, is given by Eq. linear behavior(Fig. 6).

(21) so thatF=—297/4D is given by Z=2(o+1L4ro). In The two examples above, Figs. 5 and 6, have demon-

Fig. 5 we indeed see tha(1l,=0)=20. For values of  gyai0q that there is a region of positive valuedlgf, close

I, larger than zerof- falls almost linearly with the distance zero, in which approximatioi21) is applicable. In all

D, exhibiting a negativeslope of a size increasing with cases(Figs. 4—6, approximation(18) agrees very well with
II,. One can clearly see how the actual values-adepart o numerical solutions of Eq27).

from the asymptotic value df =2f asll, is increased. But
F,=-2dQ,/dD, derived from approximation18), fits

very well to the numerical solutions of ER7). A particu- VI. CONCLUSION
larly compact form forF is obtained by taking the limit
r=rq. This changes the curves Bf =dQ4(r)/dD in a neg-

ligible way, but yields

In conclusion, we have studied capillary condensation be-
tween two disks in two dimensions as an extension of a
theory recently advanced for the wetting of a single disk. Our

( (D/2r )2 model has not been restricted to any specific system and it
_ h| 1- —) can be applied to any two-dimensional problem that involves
E dQy(r=ro) =92 1+1h (29) wetting of disks. Moreover, our approach can easily be ex-
o dD D/2ry\2 tended to describe aggregation phenomena among more than
1- 1+1h two “wetted” disklike objects in two dimensions. Such phe-
nomena may be observable in lipid membranes with large
whereh=Ilyry/o is a dimensionless field. but finite inclusions and near a first-order phase trans{gon

Following the position of the transition between the phase separatigrin the membrane.
bridged and the separated configurations in tdneo(l'[brg) We have rigorously shown that in two dimensions, where
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capillary-wave fluctuations play a dominant role, capillary simple constructiorisee Fig. 2in which the differentiability
condensation between two disks can be described within af the interface configuration is relaxed in the small regions
simple mean-field framework similar to that used to describevhere the interface is detaching from the single disk to
capillary condensation between two spheres in three dimerridge between the two disks. We have systematically shown
sions[2] [see Eq(23)]. This is made possible by the proper [Ed. (16)] that the effect of capillary-wave fluctuations is
inclusion of the disjoining pressure, which stabilizes the wetn€gligible in the regions where the interface is bridging be-
ting films around the disks against chemical and hydrostatiéveen the two disks and, by an expansion around a small
pressures that tend to diminish it. In two dimensions, thi?arametefEq. (20)], to a leading order the thickness of the
disjoining pressure is dominated by the fluctuations induced®maining wetting film is given by the theory for the sepa-
effective potential(12), which is exact and universal and 'at€d disk. To complete the picture, we have shown by com-

overrules the effects coming from van der Waals interactio fé)lsofntﬁlSec. \_);_k;that t_het s]:mple etnaltytllca_l approximation d
potentials. Hence, unlike the disjoining pressure in three di- ot the equllibrium Interface potential gives a very goo

mensions, it does not depend on the molecular details noQescription of the condensation phenomena that is more rig-

does it rely on anya priori assumption concerning the nature oro_IEJsly %efm(id by ;?otent|a23). 1688 lies in the ability t
of the molecular interactions, e.g., the additive interaction € advantage of approxima i ). €S In the ability to
energy between the volume elemerttee Refs[19] and evaluate the relative weights of the different contributions to

[2). This fundamental difference between the two- and th he interface potential and to systematically calculate asymp-

three-dimensional systems, together with the difference o tic behaviors for limit values of the differt—?-nt parameters.
geometry, which is reflected, for example, in the fact tha or example, very close to the phase transitibgi-0, the

prewettinglike transitions are found in three dimensions, pufidgregation of the disks can be expressed in terms of the
not in two[20,8], gives rise to different wetting behaviors. wetting of the single disk and the attractive force between
The effective interfacial free energy for the wetting inter- the aggregated disks is approximatively constant and of size

face close to a circular substrate above the wetting tempert—:2(0+knbr°) [S?ﬁ Efcll%l])‘l]. 'gu'rtre;, E_ql.(t18) "’.‘dds tﬁnl)é.
ture is the basis for the description of the capillary conden- ree unknowns——ihe Tiuld-liuid interfacial tension, the dis-
nce between the disks and their radii—to the laboratory

sation between two disks. Capillary condensation betwee _ L )
two wet disks occurs already when the distance between th%ontml!ed fields(temperature a_nd p_ress&tre'hls gives it a
substrates is of order of their raditg It involves a dramatic pred|c_t|ve power and makes it suitable in the analysis of
increase in the local concentrati¢or rather the coveragef experimental results.

the wetting phasésee Fig. 4 and introduces a new effective
force in the system, giving rise to a net attraction between
the disks(see Fig. 5. The detailed description of this phe-  We are grateful to O. G. Mouritsen for following and
nomenon can be obtained by the use of analytical approxipromoting this study as well as for a critical reading of the
mation schemes or a numerical approach to obtain the intemanuscript and very valuable comments. This work has been
face configuration, which minimizes the interfacial free supported by the Danish Natural Science Research Council
energy[2,3]. The analytical approximatiof18) is based ona under Grant No. 9400091.
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